Timing functions for transitions.
This module is based on the article by Gaëtan Renaudeau, with code released under an MIT license.
Members
(static, constant) ease
An easing timing function.
- Source:
 
(static, constant) easeIn
An ease-in timing function.
- Source:
 
(static, constant) easeInOut
A timing function with ease-in and ease-out.
- Source:
 
(static, constant) easeOut
An ease-out timing function.
- Source:
 
(static, constant) linear
A linear timing function.
- Source:
 
(static, constant) stepEnd
A single final step timing function.
- Source:
 
(static, constant) stepStart
A single immediate step timing function.
- Source:
 
Methods
(static) makeBezier(x1, y1, x2, y2) → {function}
Create a Bézier curve with the given control points.
Parameters:
| Name | Type | Description | 
|---|---|---|
x1 | 
            
            number | The X coordinate of the first control point.  | 
        
y1 | 
            
            number | The Y coordinate of the first control point.  | 
        
x2 | 
            
            number | The X coordinate of the second control point.  | 
        
y2 | 
            
            number | The Y coordinate of the second control point.  | 
        
- Source:
 
Returns:
- A function that takes a coordinates X and computes the Y coordinate of the corresponding point of the Bézier curve.
 
- Type
 - function
 
(static) makeSteps(n, start) → {function}
Create a staircase function.
Parameters:
| Name | Type | Description | 
|---|---|---|
n | 
            
            number | The number of steps.  | 
        
start | 
            
            boolean | Step at the beginning or at the end of each interval?  | 
        
- Source:
 
Returns:
- A function that takes a coordinates X and computes the Y coordinate of the corresponding point of the step function.
 
- Type
 - function
 
(static) stepMiddle(t) → {number}
A middle step timing function.
Parameters:
| Name | Type | Description | 
|---|---|---|
t | 
            
            number | The current time, between 0 and 1.  | 
        
- Source:
 
Returns:
- The actual progress, between 0 and 1.
 
- Type
 - number
 
(inner) A(xy1, xy2) → {number}
Helper function to compute a Bézier curve.
Parameters:
| Name | Type | Description | 
|---|---|---|
xy1 | 
            
            number | X or Y coordinate of the first control point.  | 
        
xy2 | 
            
            number | X or Y coordinate of the second control point.  | 
        
- Source:
 
Returns:
- A linear combination of the arguments.
 
- Type
 - number
 
(inner) B(xy1, xy2) → {number}
Helper function to compute a Bézier curve.
Parameters:
| Name | Type | Description | 
|---|---|---|
xy1 | 
            
            number | X or Y coordinate of the first control point.  | 
        
xy2 | 
            
            number | X or Y coordinate of the second control point.  | 
        
- Source:
 
Returns:
- A linear combination of the arguments.
 
- Type
 - number
 
(inner) bezier(t, a, b, c) → {number}
Compute a coordinate of a point of the Bézier curve.
Parameters:
| Name | Type | Description | 
|---|---|---|
t | 
            
            number | The location of the point along the curve.  | 
        
a | 
            
            number | The output of function   | 
        
b | 
            
            number | The output of function   | 
        
c | 
            
            number | The output of function   | 
        
- Source:
 
Returns:
- The X or Y coordinate of a point of the Bézier curve.
 
- Type
 - number
 
(inner) bezierSlope(t, a, b, c) → {number}
Compute the derivative of a coordinate at a point of the Bézier curve.
Parameters:
| Name | Type | Description | 
|---|---|---|
t | 
            
            number | The location of the point along the curve.  | 
        
a | 
            
            number | The output of function   | 
        
b | 
            
            number | The output of function   | 
        
c | 
            
            number | The output of function   | 
        
- Source:
 
Returns:
- The derivative dX/dt or dY/dt of a coordinate at a point of the Bézier curve.
 
- Type
 - number
 
(inner) C(xy1) → {number}
Helper function to compute a Bézier curve.
Parameters:
| Name | Type | Description | 
|---|---|---|
xy1 | 
            
            number | X or Y coordinate of the first control point.  | 
        
- Source:
 
Returns:
- A linear combination of the arguments.
 
- Type
 - number